
AD-A3 E LNU RN A NRU HKL t I NL 1, NNa IU /
I LO MASS H U ET NS OF TEH MBHIDGU IB FOH
IOMPUTR SI NC N ALNCH FBH8 M T /R-285

UNCLASSFED HOOD1-75H 0661FG 2/ NI

4.0

11111L25 111.4 1.

11111= 111.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL SUM4J OF STANDADS - 963A

83ic 09 13 123l

LLJ E'

Concurrency Control for Resilient Nested Transactions*

Nancy A. Lynch
Massachusetts Institute of Technology

Cambridge, Massachusetts
February, 1983

ABSTRACT

/

A formal framework is developed for proving correctness of algorithms which implement nested

transactions. In particular, a simple Oaction tree* data structure is defined, which describes the
ancestor relationships among executing transactions and also describes the views which different

transactions have of the data. A generalization of "serializability" to the domain of nested

transactions with failures, is defined. A characterization is given for this generalization of

serializability, in terms of absence of cycles in an appropriate dependency relation on transactions. A

slightly simplified version of Moss' locking algorithm is presented in detail, and a careful correctness

proof is given.

The style of correctness proof appears to be quite interesting in its own right. The description of

the algorithm, from its initial specification to its detailed implementation, is presented as a series of

"event-state algebra" levels, each of which "simulates" the previous one in a straightforward way. . /

Keywords: Action tree, atomicity, concurrency control, recovery, serializability, transaction,
two-phase locking.

01983 Massachusetts Institute of Technology, Cambridge, MA. 02139

*This work was supported in part by the NSF under Grant No. MCS79-24370. U.S. Army Research Office Contract
#DAAG29-79-C-0155, and Advanced Research Projects Agency of the Department of Defense Contract ,Nooo14-75-

C-.0I.

.-. , - - -

7117

1. Introduction

In the past few years, there has been considerable research on concurrency control, including

both systems design and theoretical study. The problem is roughly as follows. Data in a large

(centralized or distributed) database is assumed to be accessible to users via transactions, each of

which is a sequential program which can carry out many steps accessing individual data objects. It is

important that the transactions appear to execute "atomically", i.e. without intervening steps of other

transactions. However, it is also desirable to permit as much concurrent operation of different

transactions as possible, for efficiency. Thus, it is not generally feasible to insist that transactions run

completely serially. A notion of eauivalence for executions is defined, where two executions are

equivalent provided they "look the same" to all transactions and to all data objects. The serializable

executions are just those which are equivalent to serial executions. One goal of concurrency control

design is to insure that all executions of transactions be serializable.

Several characterization theorems have been proved for serializability; generally, they amount to

the absence of cycles in some relation describing the dependencies among the steps of the

transactions. A very large number of concurrency control algorithms have been devised. Typical

algorithms are those based on two-phase locking [EGLT], and those based on timestamps [Lal.
Although many of these algorithms are very different from each other, they can all be shown to be

correct concurrency control algorithms. The correctness proofs depend on the absence-of-cycles

characterizations for serializability.

More recently, it has been suggested [Re, M, LiS] that some additional structure on transactions

might be useful for programming distributed databases, and even for programming more general

distributed systems. The suggested structure permits transactions to be nested. Thus, a transaction
is not necessarily a sequential program, but rather can consist of (sequential or concurrent) sub-

transactions. The intention is that the sub-transactions are to be serialized with respect to each

other, but the order of serialization need not be completely specified by the writer of the transaction.
This flexibility allows more concurrency in the implementation than would be possible with a single-

level transaction structure consisting of sequential transactions. The general structure allows

transactions to be nested to any depth, with only the leaves of the nesting tree actually performing
accesses to data.

Transactions are often used not only as a unit of concurrency, but also as a unit of recovery. In a

nested transaction structure, it is natural to try to localize the effects of failures within the closest
possible level of nesting in the transaction nesting tree. One Is naturally led to a style of programming

which permits a transaction to create children, and to tolerate the reported failure of some of Its

77-~ .-a

4. * I -,

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whas. Date Ent4#0___________________

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FOM
IREPORT NUMBER 12. GOVT ACCESSION NO .3-RECIPIENT'S CATALOG M4UM8mER

MIT/LCS/TR-285& a &^

4. TITLE (aud Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Concurrency Control for Resilient Technical Report
Nestd Trnsacions6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(&) I. CONTRACT OR GRANT MUMBER~s)

Nancy A. Lynch N00014-75-C-0661 (old)
N00014-83-K-0125 (new)

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

Massachusetts Institute of Technology A EA O RK UNI NUM1R

Laboratory for Computer ScienceRR1-80
545 Technology Square, Cambridge, HA 02139 NR 049-189

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

None
13. NUMBER OF PAGES

14. MONITORING AGENCY NAME A ADORESS(I different from Controlling Otl c) ill. SECURITY CLASS. (of tisi report)

Off ice of Naval Research (Code 433) UNCLASSIFIED

Informtion cience DiviionIta. DECL ASSI FIC ATI ON/ DOWNG3RADING800 N. Quincy St. SCHEDULE

16. OISIUTON STATEMENT2(2. thIs Report)I

Distribution df this document is unlimited. Accessionn For
'I NTIS GRA&IDTIC TAB

Uaannouced

17. DISTRIBUTION STATEMENT (of the abstracet entered in Block 20, if different free Report)v- 10

Distribution is unlimited. B

IS. SUPPLEMENTARY NOTES Aa
* Avaji r

None Dist 8

It. KEY WORDS (Continue a or evete side if necessf end Identtfy by' block Memnber)

Action tree, atomicity, concurrency control, recovery, serializability,
transaction, two-phase locking.

20. ABSTRACT (Cofnu'eo on reveree aide If necoeea nd Ientify by block numnbot)

IDO I PO 1473 '01IO OP.NVj 5OSLI

S/N 0102- 0- 014- 6601 SuCUMfTV CLAMPICATION OP TWO P01S fftftM 370 561

INSTRUCTIONS FOR PREPARATION OP REPORT DOCUMENTATION PAGE

IZ.QAJ1D I. The controlling DOD office will be responsible for completion of the Report Documentation Page, DD Form 1473, inall technical reports prepared by or for DOD organizations.

OLASSIF1C!MO-M. Since this Report Documentation Page, DD Form 1473, is used in preparing announcement*, bibliographies, and da
banks, it sould-be unclassified if possible. If a classification is required, identify the classified items on the page by the appropriate
symbol.

COMPLETION GUIDE

General. Make Blocks 1. 4. 5, 6. 7, 11, 13, 15, and 16 agree with the corresponding information on the report cover. Leave
Blocks 2 and 3 blank

Block 1. Report Number. Enter the unique alphanumeric report number shown on the cover.

Block 2. Government Accession No. Leave Blank. This space is for use by the Defense Documentation Center.

Block 3. Recipient's Catalog Number. Leave blank. This space is for the use of the report recipient to assist in future
retrieval oTte document.

Block4. Title and Subtitle. Enter the title in all capital letters exactly as it appears on the publication. Titles should be
unclassified whenever possible. Write out the English equivalent for Greek letters and mathematical symbols in the title (see
"Abstracting Scientific and Technscal Reporta ofDelenae-aponaored RDT/E. "AD-667 000). If the report has a subtitle, thi subtitle
should follow the main title, be separated by a comma or semicolon if appropriate, and be initially capitalized. If a publication has a
title in a foreign language, translate the title into English"and follow the English translation with the title in the origial lanouag.
Make every effort'to simplify the title before publication. t

Block 5 Type of Report and Period Covered. Indicate here whether report is interim, final, etc., and, if applicable, inclusive
dates of period covered, such as the life of a contract covered In s final contractor report.

Block 6. Performing Organization Report Number. Only numbers other than the official report number shown in Block 1, such
as series numbers for in-house reports or a contractor/grantee number assigned by him, will be placed in this space. If no such number.
are used, leave this space blank.

Block 7. Author(*). Include corresponding information from the report cover. Give the name(a) of the author(S) in conventiloal
order (for example, John R. Doe or. if author prefers. J. Robert Doe). In addition, list the affiliation of an author if it differs from that
of the performing organization.

Block 8. Contract or Grant Number(&). For a contractor or grantee report, enter the complete contract or grant number(a) under
which the work reported was accomplished. Leave blank in in-house reports.

Block 9. Performing Organization Name and Address. For in-house reports enter the nine and address, including office symbol,
of the pero-rming activity. For contractor or grantee reports enter the name and address of the contractor or grantee who peepared the
report and identify the appropriate corporate division, school, laboratory, etc., of the author. List city, state, and ZIP Code.

Block 10 Program Element, Project, Task Area, and Work Unit Numbers. Enter here the number code from the applicable
Department of Defense form, such as the DD Form 1498, -Research and Technology Work Unit Summary" or the DD Form 1634.
"Research and Development Planning Summary," which identifies the program element, project, task area, and work unit or equivalent
under which the work was authorized.

Btock I1. Controlling Office Name and Address. Enter the full, official name and address, including office symbol, of the
controlling office. (Equates to fundinl /sponaoring agency. For definition see DOD Directive 5200.20, "Distribution Statements on
Technical Documents.")

Block 12. Report Date. Enter here the day, month, and year or month and year as shown on the cover.

Block 13. Number of Pages. Enter the total number of pages.

Block Monitoring Agency Name and Address (if different from Controling Office). For use when the controlling or funding
office does not directly administer a project, contract, or grant, but delegates the administrative responsibility to another organization.

Blocks 15 & Is. Security Classification of the Report: Declassiftcation/bowngreding Schedule of the Report. Eter in iS
the highest classification of the report. If appropriate. enter in 15. the declasification/downgrdlng schedde of the repot, usng the
abbreviations for declessification/downgrading schedules listed In paragraph 4-207 of DOD 5200.1-It.

Block Distribution Statement of the Report. Insert here the applicable distribution statement of the report froe DoD
Directive 5200.20. "Distribution Statements on Technical Documents."

Block 17 Distribution Statement (of the abstract entere in Block 20, if different from the distribution statement of Me repoet).
Insert here the applicable distribution statement of the abstract from DOD Directive 5200.20, "Distribution Staten ts on Teeicl Doc-
umnts."

Block 18. Supplementary Notes. Enter information not included elsewhere but useful, such an: Prepared in cooperation with
Translation of (or by) ... Presented at conference of... To be published in ...

01c1,Key Words. Slect terms or short phrases that identify the principal subjects coveed in the rpoend we

sufficienty-ecfic and precise to be used as index entries for cataloging. conforming to standard terminology. The DoD "Theseus
of trigneeing snd Scientific Termse (TEST), AD-672 000, can be helpful.

Blok 20, Abstract. The abstract should be a brief (not to exceed 200 words) factual m e of the meat sipafhltc iat m-
tion containiin the report. If possible, the abstract of a classified report should be unclassified and the abstract to i§0centaois
report should consist of publicly. relesable information. If the report contains a sipificeat bioehrtestrea suroel, me
it here. For infotmation on preparing abstracts see "Abatracting Scientific end Tecnitcal Reports or ieiae.Speered
AD-667 000. *u.S. e,emtes oes, tmt-4e-sise R-m

14,a..

2

children, using the information about the occurrence of the failures to decide on its further activity.

The intention is that failed transactions are to have no effect on the data or on other transactions.

This style of programming is a generalization of the "recovery block" style of IRaj to the domain of

concurrent programming. Indeed, this style seems to be especially suitable for programming

distributed systems, since many types of failures of pieces of programs are likely to occur in such

systems.

Reed is currently implementing a system which uses multiple versions of data to implement nested

transactions which tolerate failures of sub-transactions. Moss has abstracted away from Reed's

specific implementation of nested transactions, and has presented a clear intuitive description of the

nested transaction model. He has also developed an alternative implementation of the nested

transaction model, based on two-phase locking. This model and implementation are fundamental to

the Argus distributed computing language, now under development by Liskov's group at MIT.

The basic correctness criteria for nested transactions seem to be clear enough, intuitively, to

allow implementors a sufficient understanding of the requirements for their implementation.

However, some subtle issues of correctness have arisen in connection with the behavior of failed

sub-transactions. For example, the Argus group has decided that a pleasant property for an

implementation to have is that all transactions, including even "orphans" (subtransactions of failed

transactions), should see "consistent" views of the data (i.e. views that could occur during an

execution in which they are not orphans). The implementation goes to considerable lengths to try to

insure this property, but it is difficult for the implementors to be sure that they have succeeded.

It seems clear that some basic groundwork is needed before such properties can be proved.

Namely, the theory already developed for concurrency control of single-level transaction systems

without failures needs to be generalized to incorporate considerations of nesting and failures. The

model needs to be formal, in order to allow careful specification of all the correctness requirements

the simple and intuitive ones, as well as the rather subtle ones.

This paper begins to develop this groundwork. First, a simple "action tree" structure Is defined,

which describes the ancestor relationships among executing transactions and also describes the

views which different transactions have of the data. A generalization of serializability to the domain of

nested transactions with failures, is defined. A characterization is given for this generalization of

serializability, in terms of absence of cycles in an appropriate dependency relation on transactions. A

slightly simplified version of Moss' algorithm is presented in detail, and a careful correctness proof Is

given.

. m ,

3

The style of correctness proof for the algorithm appears to be quite interesting in its own right.

The description of the algorithm is presented in a series of levels, each of which is an "event-state"

algebra with unary operations, and each (but the first) of which "simulates" the previous one. The

basic problem statement is given as the highest level algebra, and successively lower levels provide
increasing amounts of implementation detail. In particular, both the problem specification and the

implementation are presented as the same kind of mathematical object, an event-state algebra. At

every level, we want to present algorithms with the maximum possible amount of nondeterminism

consistent with correctness, not forcing any unnecessary implementation decisions. Therefore, we

do not describe algorithms in the usual way, using programs with specified flow of control. Rather,

we present algorithms as collections of events with corresponding preconditions.

One novel aspect of the simulations we use, different from the usual notions of "abstraction"

mappings, is that our simulations map single lower level states to sets of higher level states, rather

than just single higher level states. (We call them "possibilities" mappings.) This extra flexibility

seems quite convenient for many implementations, allowing the more "concrete" algebra sometimes

to contain less information than the more "abstract" algebra. For example, it might be easy to prove

correctness of an algorithm which maintains lots of auxiliary information. The correctness of an

algorithm which maintains less information could be proved, in our model, by showing that it
simulates the algorithm which maintains the auxiliary information.

While possibilities mappings are convenient for proving correctness of ordinary centralized

algorithms, they produce their greatest payoff for distributed algorithms. Namely, a distributed
algorithm is described as a special case of an event-state algebra, a "distributed algebra". In a

distributed algebra, the state set is just a Cartesian product, with event preconditions and transitions

defined componentwise. To show that a distributed algebra simulates some other "abstract" algebra,
it suffices to define an appropriate possibilities mapping from the global states of the distributed

algebra, to sets of states of the abstract algebra. It turns out to be extremely natural to describe such

a mapping by first describing a possibilities mapping from the local state of each component to sets of

abstract states. The image of a local state under this mapping just represents the set of possible
global states consistent with the knowledge of the particular component. The possibilities for the

entire distributed algebra are simply obtained by taking the intersection of the possibilities consistent

with the knowledge of all the components.

It appears that this technique extends to give natural proofs of many algorithms, especially

distributed algorithms, and thus warrants further investigation. Goree [G] presents a more complete
(and slightly more general) development of the technique than is presented in this paper.

.JT~

4

The definitions given in this paper express the most fundamental correctness requirements, but

not subtle conditions such as correctness of orphans' views. Issues of fairness and eventual

progress are not addressed, but rather only safety properties, serializability in particular. Future work

involves extending the framework presented here to allow expression of these other properties, and

to allow correctness proofs for the difficult algorithms which guarantee these properties. Some

further work in these directions has already been carried out: Goree [G] has given a definition for

correctness of orphans' views, and has given a correctness proof for a complicated algorithm used in

the implementation of Argus to maintain correctness of orphans' views in the face of transaction

aborts.

Other related work is that of Stark [S]. He is carrying out a very general treatment of event-state

algebras, incorporating considerations of modularity to a much greater extent than is present in this

paper, and handling fairness and eventuality properties as well as safety properties.

2. Event-State Algebras

In this section, we describe the event-state algebra framework.

N An event-state algebra A = (A, a, l>, consists of a set A of state, an element a E A, the ial

state, and a set nl of partial unary operations. In this paper, we will usually refer to an event-state

algebra as simply an algebra.

Let a be a state, and let = (w k ... Wk) be any finite sequence of operations chosen from OP.

Then 0 is said to be MgW from a provided b = w k(Wk-l(...(r (a))...) is defined; in this case, b is called

the result of 0 applied to a. An infinite sequence of operations is said to be valid from a provided all its

finite prefixes are valid from a. We say that 0 is valid provided it is valid from a, and the Leuem of 0 is

defined to be the result of 0 applied to a. We write a I-- b provided there is some finite 0, valid from a,

for which b is the result of 0 applied to a. b is cmputable provided a l- b.

Now assume A = <A, a, I1> and A' = (A', a', 11'> are two algebras. An interretation of A by A'

is a mapping h: 1' - f U {A). We extend h to map operation sequences of A' to operation

sequences of A in the obvious way (deleting occurrences of A). An interpretation, h, is a siuato

of A by A' provided that h(V') is a valid operation sequence for A whenever ' is a valid operation

sequence for A'.

Lemma 1: Assume that A, A' and A" are algebras, that h is a simulation of A by A'

and h' is a simulation of A' by A". Then h = h' is a simulation of A by A".

Proof: Straightforward.

-I.. :-

5

0

Next, we give a sufficient condition for a mapping h to be a simulation. Let h: A' U n1' -- F(A) U n]
U {A) be such that h(a') E %A) for all a' E A, and h restricted to ni' is an interpretation. Then h is a

oossibilities mapping from X.' to A provided the following are true:

(a) a E h(o').

Assume w' E I'. Assume a and a' are computable in .A and A', respectively, and a E h(a').

Assume a' E domain(r') and b' = vla').

(b) If h(w') = w Ef, then a E domain(w) and 7r(a) E h(b').

(c) If h(w') = A, then a E h(b').

Lemma 2: Let h be a possibilities mapping from A' to . If ' is a valid operation

sequence for .', and h(4') = 4, then 4 is a valid operation sequence for A. In addition, if

4' is finite, a' is the result of 4 and a is the result of 4, then a E h(a').

Proof: By induction on the length of '.

N !0

Lemma 3: Any possibilities mapping fo ' to A is a simulation of A by A'.

Proof: Immediate by Lemma 2.

0i

If we think of A' as a "concrete" algebra, and A as a more "abstract" algebra, then we see that a

possibilities mapping allows single "concrete" states to be mapped to sets of "abstract" states rather

than just single abstract states.

An algebra, A = <A, a, fl>, is said to be distributed over a finite index set I using d, provided that A

is the Cartesian product of sets A, i E I, d is a mapping, d: 71 --# I, giving the "doer" of each operation,

and the following two conditions are satisfied.

- (Local Domain) Let i = d(w). If a, b E A and a = bi, then a E domain(w) if and only if b E

domain(w).

-(Local Changes) If a, b E domain(w), a' = w(a), b' = w(b) and = b, then a' = bi"

* 'We now consider the simulation of an algebra by a distributed algebra. Namely, we define a "local

mapping", from the local state of each component of the distributed algebra to a set of abstract

states. The result of this mapping should be thought of as the set of possible abstract states, as far as

6

a particular node can tell. The mapping from a global state of the distributed algebra can then be

defined to yield the intersection of the images of all the component states. The conditions we require

for local mappings are just those which guarantee that the derived global mapping is a possibilities

mapping.

Let .A' = <A', r', nl'> be an algebra, distributed over I using d. Let . = <A, a, n1> be any algebra.

Let h be an interpretation from A4' to .A. For each i E I, let hi: A' --4 9(A) be such that hi depends on A',
only- i.e. if ai = b, then h,(a) = h1(b). Then we say that h and h., i E I, form a local maDoing from X' to

. provided the following conditions are satisfied.

(a) For all i E I, a E hi(o')

Assume w' E I', d(wr) = i. Assume a and a' are computable in .A and X4', respectively. Assume a E

hi(a'). Assume a' E domain(w'), and b' a w*(a').

(b) If h(w') = v E 1, then a E domain(w).

(c) Assume h(r') = r E nl, j E I and a E hi(a'). Then w(a) E hi(b').

(d) Assume h(w') = A, E I and a E hi(a'), Then a C hi(b').

Lemma 4: Let A and .' = <A', a', n'> be algebras, where .A' is distributed over

I. Assume that h and hi , i C I form a local mapping from A' to A4. Extend h to A' U n' by

defining h(a') = fn, E 1hi(a'). Then h is a possibilities mapping from .,' to .

Proof: We check the three properties of the possibilities mapping definition.

(a) To see that a E h(o'), it suffices to show that a C h,(o') for all i E I. But this is exactly

the statement %f property (a) of the local mapping definition.

Now we assume the hypotheses supplied for parts (b) and (c) of the possibilities

mapping definition. Assume also that d(w') = 1.

(b) Since a C h(a'), it is obvious that a E hi(a'). Property (b) of the local mapping

definition implies that a E domain(w). In order to show that w(a) E h(b'), it suffices to fix an
arbitrary j E I and show that w(a) E hi(b'). Since a E hi(a'), the needed property follows

from (c) of the local mapping definition.

(c) It suffices to show that a E hi(b') for any j E I. This follows as in the preceding

argument from (d) of the local mapping definition.

10

9- lfii

7

If the definitions in this section are to be used in correctness proofs for the widest possible class

of algorithms, they will probably need to be generalized. In particular, it seems appropriate to permit

single operations of a more concrete algebra to be interpreted by sequences of operations of a more

abstract algebra. (See Goree [GI for definitions and uses for this generalization.) Also, sets of initial

states rather than single initial states are probably useful.

3. Action Trees

In this section, basic definitions are given for action trees and serializability.

Let obJ be a universal set of data objects. For each x E obj, let values(x) denote the set of values x

can assume, including a distinguished initial value x). A value assignment is a total mapping, f,

from obi to values(obj), having the property that f(x) E values(x) for all x E obj.

Let act be a universal set of actions (i.e. transactions). Let U be a distinguished action. We

assume that the actions are configured a priori into a tree, representing their nesting relationship,

with U as the root. For every A E act - {U), let Darent(A) denote a unique parent action for A. Let

siblings denote {(A.B) E act 2 : parent(A) = parent(B)). If A E act, let children(A) denote {B E act:

parent(B) = A). If A, B E act, let Ica(A.B) denote the least common ancestor of A and B. If A E act, let

desc(AI (resp. anc(A)) be the set of descendants (resp. ancestors) of A. Let proper-desc(A) (resp.

prooer-anc(A)) be the set of proper descendants (resp. ancestors) of A.

It might be convenient for the reader to think of this a priori configuration of all possible actions

into a tree as a preassigned "naming scheme" for actions. That is, the "name" of any action is

assumed to carry within it information which locates that action in this universal tree of actions. In

any particular execution, only some of these possible actions will be "activated". The (virtual) action

U, the parent of all top-level actions, has been added for the sake of uniformity.

Let s C siblings be any fixed partial order, representing sequential dependency. If (AB) E seq,

it means that A is constrained to run before B. For the sake of notational simplicity, we are assuming

this relation is also fixed a priori; this amount to assuming that the "name" of any action carries within

it information about which siblings the action can assume have completed. The use of an arbitrary

partial order is a generalization of both the total order usually specified for the steps which occur

within a single-level transaction, and the unconstrained order usually specified among the

transactions themselves. We also assume a priori determination of which actions actually access

data, which objects they access and the functions they perform on those objects: let accesses denote

the leaves of the tree described above. (We assume that U (accesses, so that the set of actions is

£ 4.

8

nontrivial.) Let object: accesses - obj be a fixed function. If object(A) = x, we say that A j§ an

et x. For A E accesses, let uodate(A): values(object(A)) - values(object(A)) be a fixed

function. Let sameobiect denote {(A,B) E accesses 2: object(A) = object(B)}.

I am departing from the usual approach in serializability theory by including a particular function

(rather than an uninterpreted function) in the definition of an action which accesses data. This is

because I want to state correctness conditions in terms of preserving certain relationships among the

data values seen and written. This "semantic" style of correctness condition seems to me to be more

basic than the usual correctness definitions in serializability theory, in that it says less to constrain the

implementation.

Note that the usual read and write operations of serializability theory can be regarded as special

cases of my accesses. Namely, "read accesses" have the identity function as their associcated

update function, while "write accesses" have an associated update function which is a constant

function.

Next, I give a way of describing a "snapshot" of a particular execution, using a structure called an
"action tree". An action tree can be regarded as the generalization of the log from ordinary

serializability theory.

An actio tree T has components veric activeT, committedT, aborted T and labelT, where

verticesT is a finite subset of act, closed under the parent operation: if A E verticesT -{U), then

parent(A) E verticesT, (These represent the actions which have ever been created during the current

execution.)

activeT, committedT and abortedT comprise a partition of vertices T, (These classifications

indicate the current status of each action that has ever been created. When a non-access action is

first created, it is classified as active. At some later time, its classification can be changed to either

committed or aborted. By "committed", we mean that the action is committed relative to its parent,

but not necessarily committed permanently. Permanent commit of an action would be represented by

classification of all ancestors of the action, except for U, as committed.)

labelT: datasteps T -. values(obj), (where datastes,, = committedT fl accesses), with labelT(A)

C values (object(A)). (The label of an access to an object is intended to represent the value read by

that access. Since the access has an associated function, the value which the access writes into the
robject is deducible from the value read, and therefore need not be explicitly represented.)

Let doneT denote committed T U abortedT. Let tatusT be defined by tatUSTLA) = 'active' (resp.

* '

9

'committed', 'aborted') provided A E active1T (resp. committed1T, abo rted T).- Let acessF= vertices1

flaccesses, acessL)= {B E accesses1 : object(B) = x), and datasteDs TW = {B E datastepsT:

object(B) =x). Let MTdenote seq fl(vertices..)2

Next, we describe actions whose existence is intended to be known to other actions (i.e. not

masked from those other actions by intervening failures or active actions). For A E vertices T, let

visible(A) denote (B E vertices.1 : anc(B) fl proper -desc(lca(A,B1)) g committedT) . That is,

visible T(A) is just the set of actions whose existence is known to action A, because they and all their

ancestors, up to and not including some ancestor of A, have committed. For A E verticesT, x E obj, let

Yi2szble (AA denote visibleT (A) fl datastepsT(x) . The following lemma describes elementary

properties of "visibility".

Lemma 5: Let T be an action tree, A, B, C E vertices1.*

a. If A E desc(B), then B E visible T(A).

b. A E visible T(B) if and only if A E visibleT1 ca(A,B)).

c. If A E visibleT (B) and B C visible T(") then A E visibleT(C).

d. If A E desc(B) and C E visible T(B), then C E visible.1(A).

e. If A C desc(B) and A E visible T(C), then B E visible T(C).

Proof:

a. Immediate.

b. Immediate from the fact that lca(A,B) = ca(A,lca(A,B)).

c. Let D E anc(A) fl proper-desc(ica(A,C)). We must show that D E
committed1 If D E proper-desc(ca(A,B)), then the fact that A E visibleT(B)
implies the result. So assume that D I proper-desc(Ica(A,B)). It must be the

case that D E anc(lca(A,B)), and that lca(B,C) = Ica(A,C). Thus, D E anc(B)
flproper-desc(lca(B,C)), so the fact that B E visible T(C) implies the result.

d. Immediate from parts a and c.

e. Immediate from parts a and c.

10

If A E verticesT, then we say A is live in T provided anc(A) n abortedT = 0, and we say A is dea

in T otherwise.

Lemma 6: If A, B E verticesT, A is live in T, and B E visibleT(A), then B is live in T.

Proof: If B is dead in T, then there exists C E anc(B) n abortedT• We know C (
proper-desc(Ica(AB)), since B E visibleT(A). Thus, C E anc(Ica(A,B)) C anc(A), so A is

dead in T, a contradiction.

0

If x E obi and s is a finite sequence of datasteps, then we define result(x.s) as follows. If s is the

empty sequence, then result(x,s) = init(x). Otherwise, let s = s'A. Then result(x,s)

update(A)(result(x,s')) if A involves x, = result(x,s') otherwise.

If S is a set, and < is a total order on the elements of S, then we let <<S; < > denote the sequence

consisting of the elements of S, in the order given by :5.

Let T be an action tree. A partial order p C siblings is linearizing for T provided p totally orders all

siblings in T. A linearizing partial order p induces a total order, induce.r p, on datastepsT, in the

obvious way. If A E datastepsT(x) and p is a linearizing partial order for T, let redsT pfffi denote <<{B

E visible T(A,x): (BA) E inducedT p and B * A); inducedTp>>.

A linearizing partial order p for T is said to be a serializing partial order for T provided p is

consistent with seq, and labelT(A) = result(x,predsT,P(A)), for all A E datastepsT(x). T is said to be

serializable provided there exists some serializing partial order for T.

Stating the simplest correctness requirements only requires consideration of actions whose

effects become "permanent". Therefore, we restrict attention to a portion of T, as follows. A new

baction tree Derm(T) is defined as follows.

verticesperm(T) = visibleT(U). (Lemma 5e shows that perm(T) is a tree.)

If A C verticesem(T) , then status m(T)(A) = statusT(A).

If A E datastepsperm(T) , then labelperm(T)(A) = labeT(A) .

Lemma 7: If T is an action tree and A, B E verticeSperm(T) , then B E visiblepe(T)(A).

Proof: Since B E verticeSper(T) = visibleT(U), Lemma 5d implies that B E visibleT(A).
• -. Then B E visibleprm)(A), since the status of each vertex is the same in T and perm(T).

0. r'l

i9

&

11

We will require that any tree T created by our algorithm have perm(T) serializable.

Note that the style in which serializability is defined here constrains the implementation less than

the type of definition used in "traditional" concurrency control theory. The earlier definitions regard

the data as external to the concurrency control algorithm; the algorithm is to take requests for data

accesses and translate them into actual accesses, observing appropriate rules. Generally, the

accesses performed by the concurrency control algorithm simply obtain the latest version of the data

object. A clue that the earlier definitions are too constraining is that they do not apply unchanged to

algorithms such as Reed's, which use sophisticated management of versions of the data. The earlier

definitions require extensions [KP, BG] to handle algorithms such as Reed's. These extensions still

regard the data as external to the concurrency control algorithm, and so the modified correctness

conditions contain explicit information about particular "versions" of the data objects. It seems to

me, however, that the aooearance of serializability, in terms of the values seen by the accesses, is

really all that matters- it is possible that this appearance could be preserved by some algorithm which

does not operate in terms of versions at all.

The less constraining approach which is taken here is to regard the data as internal to the

concurrency control algorithm, at least for the purpose of stating the basic correctness conditions.

Thus, the definitions introduced in this paper are intended to be applicable to algorithms which use

single versions of data objects, algorithms that use multiple versions of data objects, as well as to

other implementations as yet unforeseen.

4. An Algebra Based on Action Trees

We now define a set of operations on action trees. That is, we define an algebra A = <A, a, I[),

where A is the set of action trees, a is the trivial action tree with the single vertex U, with status
'active', and 1f contains the four kinds of operations described in (a)-(d) below. We define the

operations as follows. First, we let C denote the set of all action trees, T, for which perm(T) is

serializable. (In particular, a E C.) We constrain the ranges of all of the operations to be subsets of

C. Within this constraint, we define the domain by giving a precondition on action trees T, and use

assignment notation to describe the effect of the operation on T.

In all operations, we assume that A C act- (U).

(a) crease A

(al) Precondition
(al1) A (vertices,.

LI

12

(a12) parent(A) C verticesT - committedT.
(a13) If (B,A) E seq and B * A, then B E doneT.

(a2) Effect
(a21) verticesT +- verticesT U {A).
(a22) statusT(A) +- 'active'.

(b) commit A' A (accesses

(bl) Precondition
(bl 1) A E activeT.
(bl 2) children(A) n verticesTC doneT.

(b2) Effect
(b21) statusT(A) -- 'committed'.

(c) abortA

(c) Precondition
(cl 1) A E activeT.

(c2) Effect
(c21) statusT(A) - 'aborted'.

(d) performA,', A E accesses, x = object(A), u E values(x)

(dl) Precondition
(d 11) A E activeT.

(d2) Effect
(d21) statusT(A) +- 'committed'.
(d22) labelT(A) 4- u.

5. Augmented Action Trees

The definitions which make specific reference to versions are still useful in conjunction with the

approach of this paper. Their role is in supplying sufficient conditions for serializability, and thereby

helping to organize correctness proofs.

In this section, a new structure called an "augmented action tree" is defined. Augmented action

trees are just action trees with a little additional information. Namely, in the spirit of the earlier

definitions, some information is added which describes a sequence of versions for each data object.

Serializability is defined for augmented action trees. It is seen that serializability for augmented action

trees implies serializability for corresponding action trees. Moreover, serializability for augmented

action trees has a cycle-free characterization similar to those in usual concurrency control theory.

13

Thus, this structure can be useful in proofs of serializability for action trees.

An augmented action tree (AAT), T, is a pair (S,D), where S is an action tree and D C sameobject s

is a partial order on datastepss which totally orders the datasteps for each object. In this case, we

write dataT for D. We extend action tree notation to T; for example, we write datastoT to denote

datastepss . If T is an AAT, then let siblinq-data T denote {(A,B) E siblings: (C,D) E dataT for some C E

desc(A), D E desc(B)1. If A E datastepsT(x), then let v-dataT(A) denote {B E visibleT(A,x): (B,A) E

dataT and B * A).

The following is a technical lemma needed for the characterization theorem.

Lemma 8: Let T be an AAT. If there is a cycle of length greater than one in seq U
sibling.dataT, then there is a cycle of length greater than one in seq T U sibling-data r .

Proof: Assume not. Choose a cycle, C, of minimum length greater than one, in seq U
sibling.data . There must be an action, A, on C with A (vertices T Let (B,A) and (A,C) be
the two pairs on C involving A. Then both pairs are elements of seq. Thus, (B,C) E seq and
B * C, since seq is a partial order. Removing A from C leaves a cycle with at least two

elements (B and C). having one fewer element than C. This contradicts the minimality of C.

0

If T = (S,D) is an AAT, then erase(T is just the action tree S. We extend the definitions of visible,

live, dead, linearizing, induced, Dreds and serializable to an AAT, T, by applying them to erase(T). An

AAT, T, is data-serializable provided there exists p, a serializing partial order for T, with the additional

property that inducedT. p is consistent with data.r . Data-serializability for AAT's provides a sufficient

condition for correctness.

Lemma 9: Let T be an AAT. Let p be a linearizing partial order for T, x E obj, and A E
datastepsT.(x). Assume that inducedT,p is consistent with dataT . Then predsTP(A) =

<<v-dataT(A); data.r)>.

Proof: Straightforward.

0

Data-serializability for AAT's has a cyck iree characterization. First, we give a definition which

*says that the label of each access describes the correct object value which the access should see, if

the versiohs of objects are ordered according to the dataT order. Formally, an AAT is

version-comoatible provided for every x E obj, and every A E datasteps.r(x), it is the case that

label1.(A) - result(x,s), where s = <<v-dataT(A); data1.>>.

Theorem 10: An AAT, T, is data-serializable if and only if both of the following are

r
e

I

14

true:

a. T is version -compatible.

b. There are no cycles of length greater than one in seqT U sibling-dataT.

Proof: Assume T is data-serializable, and obtain p, a serializing partial order for T for
which induced is consistent with dataT.T,p

a. Let A E datastepsr(x), s = <<v-dataT(A); dataT>>. Then labelT(A) =

result(x,predsT (A)), by the definition of serializability, = result(x,s), by

Lemma 9.

b. seqT U sibling.dataT C p. Thus, there are no cycles of length greater than

one in seqT U sibling-dataT.

Now assume a. and b. Lemma 8 implies that there are no cycles of length greater than

one in seq U sibling-dataT. Let p be any partial order which totally orders all siblings and

is consistent with seq U sibling-dataT. Then p is linearizing for T, ai,. inducedTxp is

consistent with dataT. We will show that p is a serializing partial order for T. Let x E obi, A
N E datastepsT(x). We must show that labelT(A) = result(xpredsTP(A)). Since T is version-

compatible. we know that labelT(A) = result(x,s), where s = <<v-dataT; dataT>>. Then
Lemma 9 implies that s = predsT,p(A), as needed.

0

6. An Algebra Based on Augmented Action Trees

In order to prove that an algorithm generates only correct operation sequences, it is helpful to
include the additional information present in AAT's. Thus, we define operations on AAT's,

analogously to the definitions for action trees. Once again, we carry out the definitions within the

algebra framework defined earlier. We define a new algebra A' = (A', a', fl'>, where A' is the set of

AAT's, a' is the trivial AAT which has a single vertex U with status 'active', and the operations in n1'
correspond closely to the operations of A, and are designated by the same names. (We will rely on

context to distinguish the two cases.) The only differences are that there is no global constraint

corresponding to C, and performA,, introduces two additional preconditions and an additional

change. These new conditions can be thought of as capturing the abstract effect of a variant of

Moss' locking algorithm.

(dl) Precondition

15

(d 12) Let B C dataStepST(x), B live in T. Then B E visible T(A,x).3(d 13) It A is live in T, then u = result(x,s), where s = <(visibleT (A,x); data1)>.

(d2) Effect
0d23) data1 T .- data T U {(B,A): B E datasteps T(X)) U {(A,A)).

Lemma 11: If T is computable in XA, then the following are true.

a. If A E vertices1T and parent(A) E committed1,' then A E done1.'

b. If A E vertices1T and (BA) E seq and B * A, then B E done1.'

c. U E active1.'

d. If (BA) E data1,' then either B is dead in T, or else B E visibleT (A).

e. If A E committed, and B £ desc(A) flvertices1T then either B is dead in T or
else B E visible T(A).

Proof: Most of the arguments are straightforward. We argue cases d. and e.

'Id. If B = A, the result is immediate. If B * A, then the only way we get (B,A) E dtT is
by virtue of some performAu event. That is, there exists T' such that T' F- T, such that the
precondition for some step perform A u is satisfied in T'. Thus, B is dead in T' or B E
visible T.(A). Therefore, B is dead in T or B E visible T(A).

e. If B = A, the result is immediate. So assume A * B. Let A Ecomte B E
desc(A) flvertices T'B live in T, and B (visible T(A). Then there exist C, D E desc(A) nl
anc(B), for which C = parent(D), C E committed1T and D E active1. But this contradicts
part a.

Lemma 12: Let T and T' be computable in A', and assume that T 1-- T'.

a. vertices1T C vertices1,, committed1 C; committed T', aborted1 C aborted, n
dataT C data1 ,.

b. If A C datastepsT then labeI1 (A) = labe~r (A).

c. If A C datastepsT and (BA) E data1,, then (B,A) E dataT.

d. If A E verticesT then visible (A) Cvisible~()

* 1 _ _ _T_

16

e. If A E verticesTr and A is live in T', then A is live in T.

f. If A = parent(B) and A E committedT and B E vertices, then B E done T .

Proof: The only case that takes some arguing is f. Let A = parent(B), A E committed1.

and B E vertices , . Let T' be the result of 40 applied to T, and let T be the result of *I. Then

contains a step ir of the form commitA, and *04h contains a step p of the form create a.

w cannot precede p, since the precondition for p would be violated. So p precedes w.

Then the precondition for 7r implies that B E doneT.

Note that there is no correctness condition for AAT's explicitly mentioning serializability. This is

because for AAT's, computability alone is sufficient to guarantee serializability of perm(T), as we

show in the next theorem.

Lemma 13: If T is computable in .', then perm(T) is version-cc mpatible.

Proof: Let A E datastepSperm(T)(x). We must show that u (= labelPerm(T)(A)) =

result(x,s), where s = <<v-data per(T)(B); data perm(T)>. A is inserted into the tree by a

performA,u step w, so let the operation sequence producing T be written as Ow1'. Let T'

denote the result of 4b, and T" the result of Ow. The preconditions for i show that

label.,.(A) = result(x,s'), where s' = <<visibler,(Ax); data.,>. By Lemma 12b and the

definition of perm(T), it follows that labelperm(T)(A) = result(x,s'). Thus, it suffices to show

that s = s'. Since both dataT. and dataperm(T) are consistent with dataT it suffices to show

that s and s' contain the same elements.

First, let B E s. Then (B,A) E data1 and so by Lemma 12c, B E datastep...(x). Since A

is the only element in T" which is not in T', B E datasteps,.(x). Since A E vertices . =

visibleT(U), and U (aborted T (by Lemma 11), it follows that A is live in T. Since B E

visibleT(A), Lemma 6 shows that B is live in T. Thus, B is live in T', by Lemma 12e. The

precondition for , implies that B E visibleT,(A,x), so B E s'.

Conversely, suppose B E s'. Then B * A since A (vertices.. Then (B,A) C datar,, so

by Lemma 12a, (B,A) E dataT . By Lemma 12d, B E visibleT(A,x). By Lemma 7, it suffices to

show that B E verticesperm(T) = visibleT(U). But B E visibleT(A) and A C visibleT(U), so

Lemma 5c suffices.

Lemma 14: If T is computable in A', then there are no nontrivial cycles in seqpeT U

sibling-datapetnln
Proof: Assume the contrary: let (v,A1 A k a), k >2, be a minimum length cycle

17

such that (A,A+ 1) E seqperm(T) U sibling.dataperm(T) for all i, 0 < i < k-1. Let a sequence

b of operations be defined so that T is the result of 4b. We will show that for each i, 0 < i <
k-1, there exists a prefix 4'i of 4b such that if T' is the result of *Pi then A, E doneT, I and

Ai . 1 4 doneT'" If we fix i for which ''i is of maximum length, and let T' be the result of this

'i, then we see that Ai + I (doneT" But *i + , is no longer than 1r so Lemma 12a implies
that A, + 1 E doneT , which is a contradiction.

Fix i. If (AVAi 1) E Seqperm(T)' then 4o has a prefix w,,, where ir is a createAi.I

operation. Let T' be the result of *,. The preconditions for r imply that A, E doneT. Thus,

,P = 'P suffices.

Now assume that (AiAi+ 1) E sibling-dataperm(T)* Then there exist B E desc(A,), C E

desc(A +) with (B,C) E dataperm(T) ' Since B, C E verticesperm(T) , it follows that (anc(B) U

anc(C)) fl proper-desc(U) C cornmittedT. Now, 4' has a prefix 'Pir, where w is a
performcu step. Let T' be 'he result of ',, and T" the result of ',a. Lemma 12c implies

that (B,C) E dataT, so that B E datastepsT.. Since B is live in T (using Lemma 11c),

Lemma 12e implies that B is live in T'. Then the precondition for ir implies that B E

visibleT(C), which means that A, E anc(B) nl proper-desc(Ica(B,C)) C committed , C

doneT". We must show that A+ I (doneT; if we can do this, then taking 'P = iyields the

result. Assume Ai +1 C doneT" Then let D be the lowest ancestor of C for which D E

doneT,; it must be the case that D E anc(C) n proper -desc(fca(B,C)) C committedT so D E

committedT. Since C (verticesT. , we know that D * C. Let E be the single element of

children(D) n anc(C). Then E (doneT,. Then E (verticesT by Lemma 12f. This means C
verticesT. This is a contradiction.

0

Theorem 15: If T is computable in A', then perm(T) is data-serializable.

Proof: Immediate from Lemma 13, Lemma 14 and Theorem 10.

0

Next, we show that it is sufficient to restrict attention to correctness of operation sequences for

AAT's. We define a mapping h from A' to A as follows. If T is an AAT, then h(T) = {erase(T)). If w is

in n1', then h(w) is just the operation in fl with the same name.

Lemma 16: h is a simulation of A by A'.

Proof: (a) and (c) are immediate. To see (b), the first conclusion follows immediately

from the fact that a' E domain(w') (since only additional constraints are added for A'); note

that Theorem 15 implies that the C-constraint is always satisfied. The second conclusion

is then straightforward. Thus, h is a possibilities mapping. Lemma 3 shows that h Is a

18

simulation.

7. An Algebra Based on Version Maps

In this section, we introduce another data structure. This one records, for each object and action,

the sequence of accesses to the object whose result is available to the action.

A version mad is a partial mapping V from obj x act to sequences of accesses, such that the

following properties are satisfied:

- V(x,U) is defined for all x,

.each V(x,A) consists of accesses to x,

-for each x, if V(x,A) and V(x,B) are both defined, then either A E desc(B) or B E desc(A),

- if V(x,A) and V(x,B) are both defined and B E desc(A), then V(x,B) is an extension of V(x,A).

If A is the least action for which V(x,A) is defined, then we call A the principal action for x in V; in

this case, if resut(x,V(x,A)) = u, we say that u is the princia value of x in V.

We define another algebra, .A" = <A", a", IT'>, as follows. A" is the set of pairs (T,V), where T is

an AAT and V is a version map. a" consists of the trivial AAT consisting of a single node U with status

'active', and the version map which has V(x,U) equal to the empty sequence, for all x, and is otherwise

undefined. fn" consists of the six operations defined below in (a)-(f).

In all the operations to follow, we assume that A E act - {U). Operations (a)-(c) are identical to

(a)-(c) of .A'.

(d) performA,, 'A E accesses, x object(A), u E values(x)

(dl) Precondition
(dli 1) A E activeT.

(d12) {B: V(x,B) is defined) C proper-anc(A).
(d13) u is the principal value of x in V.

(d2) Effect
(d21) statusT(A) .- 'committed'.
(d22) labelT(A) - u.
(d23) dataT .- dataT U ((B,A): B E accesses.(x)) U {(A,A)).
(d24) V(x,A) - V(x,B) e (A).

,

19

(e) release-lock A,x' x E obj

(el) Precondition
(el 1) V(x,A) is defined.
(e12) A E committedT.

(e2) Effect
(e21) V(x,parent(A)) 4- V(x,A).
(e22) V(x,A) -- undefined.

(f) lose-lockA,x, x E obj

(f 1) Precondition
(f 11) V(x,A) is defined.
(f12) A is dead in T.

(f2) Effect
(f21) V(x,A) +- undefined.

Lemma 17: If (T,V) is computable in A", then the following are true.

a. If V(x,A) is defined, then A E verticesr.

b. If B E datastepsT(x) and B is live in T, then there exists A E anc(B) with V(x,A)
defined and B an element of V(x,A).

c. If V(x,A) is defined, then each element of V(x,A) is in visibleT(A).

d. If V(x,A) is defined, then the elements of V(x,A) are in dataT order.

Proof: Straightforward. We argue b., for example. Immediately after an operation
performB,8 occurs, we see that V(x,B) is defined, and B E V(x,B). Assume inductively that
there is some ancestor, C, of B with V(x,C) defined and B E V(x,C). Since B remains live,
there are no steps of the form lose-lockc,x. Thus, if V(x,C) is ever changed, it must be
because of a release-lock step. There are two possibilities. First, the change could occur
because of a release-lockc,, step. But such a step causes V(x,parent(C)) to take on the
old value of V(x,C), thereby preserving the needed property. Second, the change could
occur because V(x,C) gets redefined to be the previous value of V(x,D), where D E
children(C). But because the successive sequences are extensions of each other, B is an
element of V(x,D) as well. Thus, the needed property is preserved in this case also.

03

Define a mapping h' from A" to A' as follows. h' maps (T,V) to {T), and maps operations (a)-(d) to

operations of the same name, and operations (e) and (f) to A.

J eIIF

F-7-

20

Lemma 18: h' is a simulation of A' by A".

Proof: It suffices to show that h' is a possibilities mapping. The first and last properties

are easy to check. We consider the second property. Let w' E rn", where h'(w') = V E nl'.
Then s,' is either of the form createA, commitA. abortA or performAu. In the first three

cases, the second property is easy to check. So assume that wi' is of the form performA, u.

Assume (T,V) is computable in ." and wi' is defined on (T,V), yielding (T',V'). We must

show that performA, u (i.e. the operation of A') is defined on T. Let x = object(A).

Condition (dl 1) for A' follow immediately from the corresponding condition for A".

We consider (d12). Let B E datastepsT(x), and assume that B is live in T. Since (T,V) is

computable in A", Lemma 17 implies that there is some C E anc(B) for which V(x,C) is

defined and for which B is an element of V(x,C). Then Lemma 17 implies that B E

visibleT(C). Since w' is defined on (T,V), (d12) for A" implies that C E anc(A). Since A E
verticesT Lemma 5 implies that B E visibleT(A), as needed.

Next, we consider (d13). Assume A is live in T, and let s = <<visibleT(A,x); dataT>>. We

must show that u result(x,s). Let B be the principal action for x in V. Condition (dl 3) for
.A" implies that u = result(x,V(x,B)). It suffices to show that s and V(x,B) are identical.

Since the elements of V(x,B) are in data. order (by Lemma 17), it suffices to show that s

and V(x,B) contain the same set of elements.

First assume C is in s, i.e. C E visibleT(A,x). Since A is live in T, Lemma 6 implies that C

is live in T. Then Lemma 17 implies that there exists D E anc(C) for which V(x,D) is defined

and C is an element of V(xD). Since B is the prircipal element for x in V, the sequence

extension property of the definition of version maps implies that C is also an element of

V(x,B).

Conversely, assume that C is an element of V(x,B). Lemma 17 implies that C E

visibleT(B). Condition (d12) for A" implies that B E anc(A). Thus, C E visibleT(A).
yT

It is easy to check that the changes correspond correctly, once we know that the

;definability conditions correspond. Therefore, h' is a possibilities mapping.

0

Theorem 19: h e h' is a simulation of A by A".

Proof: Immediate from Lemmas 16, 18 and 1.

I3

I 0-

21

8. An Algebra Based on Value Maps

In this section, we introduce another data structure. This one records, for each object and action,

the latest value of the object which is available to the action.

A value MV is a partial mapping V from obj x act to values(obj), such that the following properties

are satisfied:

* V(x,U) is defined for all x,

- each V(x,A) C values(x), and

-for each x, if V(x,A) and V(x,B) are both defined, then either A E desc(B) or B E desc(A).

If A is the least action for which V(x,A) is defined, then we call A the orincipal action for x in V; in

this case, if V(x,A) = u, we call u the principal value of x in V.

We define another algebra, A" = <A"', a"', l.'">, as follows. A' is the set of pairs (T,V), where T

is an AAT and V is a value map. a"' consists of the trivial AAT consisting of a single node U with

status 'active', and the value map which has V(x,U) equal to init(x), for all x, and is otherwise

undefined. f1" consists of the six operations defined below in (a)-(f).

In all the operations to follow, we assume that A E act - {U). Operations (a)-(c), (e) and (f) are

identical to the corresponding operations of .A". Operation (d) is also identical, except for the change

indicated below.

(d2) Effect
(d24) V(x,A) .- update(A)(u).

If V is a version map, then let eval(V) be the value map defined on exactly the same domain, so

that eval(V)(x,A) = result(x,V(x,A)).

Lemma 20: Let V be a version map, x C obj. Then the principal action for x in V is the

same as the principal action for x in eval(V), and the principal value of x in V is the same as
the principal value of x in eval(V).

Proof: Straightforward.

Define a mapping h" from .A"' to A" as follows. Let h"(T,V) = {(T,W): eval(W) - V). h" maps all

operations to operations of the same name.

Lemma 21: h" is a simulation of ." by .A"'.

I,

22

Proof: It suffices to show that h" is a possibilities mapping. The first and last
properties are easy to check. We consider the second property. Let W' E nH"'. If ir' is one

of (a)-(c), (e) or (f), then the second property is obvious.

Assume iv' is perform A u Assume (T,V) is computable in .A"', (T,W) E h"'(T,V), (T,W)

is computable in .A", w' is defined for (T,V) and (T',V') = w'(T,V). Lemma 20 implies that

the definability condition holds, i.e. that w = perform A,u is defined on (T,W). It follows
from the effects of the two operations that w(T,W) = (T',W') for some version map W'. It

suffices to show that eval(W') = V. Since eval(W) = V, we only need to consider the
values which change because of the present operation, i.e. we need to show that

result(x,W'(x,A)) = V'(x,A). But result(x,W'(x,A)) = result(x,W(x.B) o (A)), where B is the
principal action for x in W, = update(A)(resut(x,W(x,B))), = update(A)(V(x,B)) since

eval(W) = V. But B is the principal action for x in V, by Lemma 20, so u = V(x,B).
Therefore, the latest term in the extended equality is equal to update(A)(u), which is equal

to V'(x,A) by definition.

0

Theorem 22: h o h' o h" is a simulation of A by .A"'.

Proof: Immediate from Lemmas 19, 21 and 1.

0

9. The Algorithm

A slightly simplified version (which doesn't distinguish read and write steps) of Moss' algorithm is

described using a distributed algebra.

Let [k] denote {1....k).

We fix a particular k, as the number of nodes. For convenience, we designate the nodes by

identifiers in [k].

Let home: (act - {UI) U obj - [k], with home(A) = home(object(A)) for all A E accesses. Thus,

home partitions the actions and objects among the nodes. Let oriain: (act -{U)) -- [k] be defined so
'C that origin(A) = home(A) if parent(A) = U, and = home(parent(A)) otherwise.

In order to describe the local state of each node, it is convenient to define a generalization of

action trees. Thus, we define an action summary T to consist of components .di l active T,

committedT and aortddT' where verticesT is any finite subset of act (not necessarily closed under

. ..- '; , .. - .

23

the.parent operation), and the remaining three components form a partition of verticesT. The notation

doneT and status T is also extended in the obvious way. If T and T' are action summaries or action

trees, w e say that T < T' provided verticesT C verticesT,, and correspondingly for committed T and

abortedT. We also define T" = T U T' so that verticesT" = verticesT U verticesT, and similarly for

committedT", and abortedT,,.

We describe the algorithm as yet another algebra, % = <B, 7, P>, which is distributed over ! = [k]

U ['buffer'). The components are defined as follows. B is the Cartesian product of B, where i E I. If i

E [k], then BI consists of the values of variables i.T which can contain an action summary, and i.V,

which can contain a value map defined only for pairs (x,A) having home(x) = i. If i = 'buffer', then B.

consists of the values of variables M f j E [k], each of which can contain an action summary. (The

contents of M. are intended to denote information which has been sent to node j.)

T is a vector of initial states for all the components. If i E [k], then 'i has i.T initialized as the trivial

action summary. having no vertices, and i.V initialized so that i.V(x,U) = init(x) for all x with home(x)

= i, and otherwise undefined. If i = 'buffer', then r. has each MI equal to the trivial action summary.

The algorithm has eight kinds of operations. Six correspond closely to the six operations of A"'

- four record the creation, commit and abort of actions and the performance of data accesses and two

manipulate locks. The other two correspond to the sending and receiving of messages. The

operations are listed below. As usual, we present them by listing a precondition and the effect on the

state. In addition, we define d(w), the doer of each step.

In all cases, we assume that A E act - {U);

(a) createiA, origin(A) = i

(al) Precondition
(all) A (iverticesT.
(a12) If parent(A) * U, then parent(A) E i.verticesT -i.committedT.
(a13) If (B,A) E seq and B * A, then B i.doneT..

(a2) Effect
(a21) i.vertices - erticesT U (A).
(a22) i.statusT.(A) +- 'active'.

(a3) Doer: i

(b) commiti,A' A (accesses, home(A) = i

(bt) Precondition
(bl 1) A E i.active T.
(bl2) children(A) fl i.vertices T Q i.doneT.

.', l , " -- I"_S

22

Proof: It suffices to show that h' is a possibilities mapping. The first and last
properties are easy to check. We consider the second property. Let w' E [1". If w' is one
of (a)-(c), (e) or (f), then the second property is obvious.

Assume w' is performA,u . Assume (T,V) is computable in A"', (TW) E h"'(T,V), (T,W)
is computable in A", w' is defined for (T,V) and (T',V') = w'(T,V). Lemma 20 implies that
the definability condition holds, i.e. that w = performA u is defined on (T,W). It follows
from the effects of the two operations that 7r(T,W) = (T',W') for some version map W'. It
suffices to show that eval(W') = V'. Since eval(W) = V, we only need to consider the
values which change because of the present operation, i.e. we need to show that
result(x,W'(xA)) = V(x,A). But result(x,W'(x,A)) = result(x,W(x.B) o (A)), where B is the
principal action for x in W, = update(A)(resut(x,W(x,B))), = update(A)(V(x,B)) since
eval(W) = V. But B is the principal action for x in V, by Lemma 20, so u = V(x,B).
Therefore, the latest term in the extended equality is equal to update(A)(u), which is equal
to V'(xA) by definition.

01

Theoren'i 22: h o h' o h" is a simulation of .A by .A"'.

Proof: Immediate from Lemmas 19, 21 and 1.

0

9. The Algorithm

A slightly simplified version (which doesn't distinguish read and write steps) of Moss' algorithm is

described using a distributed algebra.

Let [k] denote {1,....k).

We fix a particular k, as the number of nodes. For convenience, we designate the nodes by

identifiers in [k].

Let home: (act - {U)) U ob - k], with home(A) = home(object(A)) for all A E accesses. Thus,
home partitions the actions and objects among the nodes. Let orgin: (act - (U)) - [k] be defined so

that origin(A) = home(A) if parent(A) = U, and = home(parent(A)) otherwise.

In order to describe the local state of each node, it is convenient to define a generalization of
action trees. Thus, we define an action summar T to consist of components = , AtiT,

committedT, and abortedT, where vertices7 is any finite subset of act (not necessarily closed under

-W... .. I

24

(b2) Effect
(b21) i-statusT (A) '-committed'.

Wb) Doer:

(c) abortiA' A (accesses, home(A) =

(0i) Precondition
(cli1) AE actieT

(02) Effect
(c21) i.status T(A) - 'aborted'.

(c3) Doer:

(d) performAu' A E accesses, x = object(A), u E values(x),
home(A) = i, home(x)=

(d1) Precondition
(dlI1) A ELcteT
(d12) {B3: i.V(xB)) is defined) g proper-anc(A).
(d 13) u is the principal value of x in i.V.

(d2) Effect
(d21) i.status T(A) - 'committed'.
(d22) i.V(xA) .- update(A)(u).

(d3) Doer:

(e) release-lock ,Ax' home(x) =

(el) Precondition
(eli1) i.V(x,A) is defined.
(e12) A E i.committed T'

(02) Effect

(e22) i.V(x,A) .- undefined.

(e0) Doer:

(f) lose-lock ,Ax' home(x) =

(f 1) Precondition
(f 11) i.V(x,A) is defined.
(f 12) anc(A) fli.abortedT~ 0.

(f2) Effect
(f21) i.V(x,A) ~-undefined.

25

(13) Doer:

(g) send 1 T'j T' an action summary

(g 1) Precondition

(gl1) T' < iT.

(g2) Effect
(g21) M. - M.iU T'.

(g3) Doer:

(h) receive1 T" T' an action summary

(hi) Precondition
(hl1) T' < M..

(h2) Effect
(h21) i.T 4.- i.T U T'.

Nh) Doer: buffer

That is, any communication is allowed at any time, which sends any of the action summary

in formation from i to j.
Lemma 23: 5R is an algebra, which is distributed over I using d.

Proof: Straightforward.

03

Now define an interpretation h... from Sf to A... by mapping the first six types of operations to the

operations of the same name, suppressing the index in [k], and the other two types of operations to A.

If b C B, then we add "[b]" to the end of a variable name to denote the value of that variable in

state b.

For each i E 1, we define a mapping hi from B to 9(A ...) as follows. If i E [k], then (T,V) E hi(b)

exactly if (T,V) is computable in A... and the following are true:

-verticesT fl A: origin(A) = i) C i-verticesT~b] C- vertices..

*committedT fl A: horne(A) a I) C i.committedT[bJ C; committed'..

-abortedT fl(A: home(A) =i) CZ i.abortedT[b] C.

1~ T_ abortedT_____

r
26

i-Vb] is the restriction of V to {(x,A): home(x) = i).

If i = 'buffer', then (T,V) E h1(b) exactly if (T,V) is computable in A.'" and M[b] < T for each I E [k).

If (T,V) E hi(b), then we also say that (T,V) is i-consistent with b.

Lemma 24: For all i E I, 'E h().

Proof: Immediate from the definitions.

Lemma 25: Assume i E I. Assume 7' E P, d(w) = i, r = h'"(w') E r"', a and a' are

computable in A.". and S, respectively, a E hi(a') and a' E domain(m'). Then a E

domain(w).

Proof: Let a be (T,V).

First, assume that w' is createiA, so that w is createA. Then origin(A) = i. Since a' E

domain(w'), A (i.verticesT[a']. Since (T,V) is i-consistent with a', A (verticesT, thus

showing (a1). If parent(A) = U, then the fact that (T,V) is computable and Lemma

17 imply that parent(A) E activeT, thus showing (a12) for this case. On the other hand, if
parent(A) * U, then the precondition for w' shows that parent(A) E i.verticesT[a'

. i.committedT[a'] . The fact that (T,V) is i-consistent with a' implies that parent(A) E
verticesT ' committed T. Thus, (a12) holds. If (B,A) E seq and B * A, then the precondition

for a' shows that B E i.doneT[a']. The fact that (T,V) is i-consistent with a' implies that B E
doneT, thus showing (a13).

Second, consider w' = commit i,A' so that w is commitA. The precondition for w'
shows that A E i.activeT[a]. The fact that (T,V) is i-consistent with a' implies that A E

, activeT, thus showing (b1l). The precondition for w' shows that children(A) n
i.verticesT[a'] C i.doneT[a'] . The fact that (T,V) is i-consistent with a' implies that

children(A) nl verticesT C doneT, thus showing (bl 2).

Third, assume w' = abort i,A so that w is abortA. This case is similar to the first half

of the previous case.

Fourth, assume w' = performl,A,u , so that w is performA,u. Then home(A)
i. Assume object(A) = x, so that home(x) = i. (dl1) is argued as in the preceding two

cases. We show (d12). Choose B so that V(x,B) is defined. Since (T,V) is i-consistent with

a' and home(x) = i, i.V(x,B)[a'] is also defined. The precondition for w' implies that B E

- I proper.anc(A), as needed. Next, we show (d13). The precondition for w' implies that u is
j the principal value for x in i.V[a']. Since (T,V) is i-consistent with a', u s also the principal
t value for x in V, as needed.

ME

27

If w' is one of (e) or (f), then w' involves some x with home(x) = i. Assume that w'
involves A. The precondition for w' implies that i.V(x,A)[a'] is defined. Since (T,V) is i-

consistent with a', it follows that V(x,A) is defined, thus showing both (el 1) and (fl 1).

If m' is a release-lock ,A,x step, then the precondition for i' implies that A E
i.committedT [a]). Since (T,V) is i-consistent with a', A C committed thus showing (e12).

Finally, if w' is a lose-locki,A,x step, the precondition for w' implies that anc(A) n
i.abortedT[a'] * 0. Since (T,V) is i-consistent with a', it follows that A is dead in T, thus

showing (112).

Lemma 26: Assume i, j E I. Assume w' E P, d(v') = i, 7r = h.'(7') E OP"', a and a' are
computable in ." and S, respectively, a E h (a') nf hi(a'), and a' E domain(wr'). If b' =

%'(a'), then w(a) E hi(b').

Proof: Let a = (T,V) and w(a) = (T',V'). Lemma 25 implies that a E domain(w).

If j * i, then it is easy to see that all the containments are preserved, since the sets of
actions on the right sides are only increased, while the sets on the left sides are
unchanged. The property involving V is also easily seen to be preserved. So assume i =

i. We consider the six kinds of operations in turn.

First, assume w' is of the form createi,A, commit i,A or aborti,A. Then V' = V, and T'

is exactly like T except that A is added to verticesT, committedT or abortedT as appropriate.
Also, b' is just like a' except that A is added to i.verticesT, i.committedT, or i.abortedT, as
appropriate. Since (TV) is i-consistent with a', it is easy to see that all the containments
change in such a way as to insure that (T',V') is i-consistent with b'.

If w' is of the form performi,A, u, then home(A) = i. Let x = object(A). Then home(x)
= i. T' is just like T except that A is added to committedT and is given label u, and dataT is

augmented with all pairs in {(B,A): B E datastepsT(x)) U (A,A). V' is just like V except that
V'(x,A) is defined to be update(A)(u). b' is just like a' except that A is added to
i.committedT, and i.V(x,A) is defined to be update(A)(u). Since (T,V) is i-consistent with a',
it is easy to see that (T',V') is i-consistent with b': most of the properties are immediate.
We just check the last property; the only change involves A. We have already noted that
i.V(x,A)[b'] - update(A)(u) = V'(x,A). This is as needed.

If w' is of one of the forms (e) or (f), then T' = T and i.Tib'] = i.T[a']. Thus, it is clear

that the containments are all preserved. It is also easy to check that the final property is

.. . S7

28

preserved.

0

Lemma 27: Assume i, j E I. Assume w' E P, d(r') = i, h(w') = A, a and a' are

computable in A.."' and S1, respectively, a E hi(a') fl hj(a'), and a' E domain(w'). If b' =

,r'(a'), then a E hi(b').

Proof: Let a = (T,V).

First, assume that i' is sendi,,, If j * 'buffer', then b'. = a', i and the conclusion is

immediate. So assume that i = 'buffer'. Since (T,V) is j-consistent with a', each action

summary Ml[a'] < T. The precondition for 7r' implies that T' < i.T[a']. Since (T,V) is

i-consistent with a', it follows that i.T[a'] < T, and hence T' < T. Now, each M,[b'] M,[a']

U T'. Therefore, each M,[b'] < T, as needed.

Next, assume that w' is of the form receivei,,T" so that i = 'buffer'. The only nontrivial

case is j = i'. We must show that j.Tb'] <_ T. But j.T[b'] = j.T[a'] U T'. The j-consistency

of (T.V) with a' shows that i.T[a'] _ T. The precondition for ff' shows that T' < M[a'].
Since (T,V) is i-consistent with a', M i[a'] < T. Thus, T' < T. Therefore, j.T[b'j _ T, as

needed.

0

Lemma 28: h' and hi, i E I, form a local mapping from • to A"'.

Proof: Immediate from Lemmas 24, 25, 26, and 27.

0

Now extend h' to B U P, by defining h'(b) = n iE hi(b).

Lemma 29: h' is a simulation of A." by SR.

Proof: Immediate by Lemma 28, Lemma 4 and Lemma 3.

We are now ready to prove the main correctness theorem.

Theorem 30: The mapping h o h' o h" o h' is a simulation of . by S.

Proof: Immediate from Lemma 29, Lemma 1 and Theorem 22.
V,!

0]

29

10. Acknowledgements

Many other people have contributed their ideas and efforts to this work. Barbara Liskov

suggested formal treatment of this area, and monitored proposed formalizations for their faithfulness

in representing the behavior of the Argus system. John Goree used a much earlier draft of the cLrrent

paper as a starting point for the work in his Master's thesis; in the process of writing his thesis, he

discovered several major ways of clarifying the ideas of this paper. Many of the ideas Gene Stark is

developing for his thesis have found their way into the present paper. Mike Fischer discussed some

of the early attempts at formalization, and contributed several insightful suggestions. Bill Weihl and

Gene Stark contributed helpful criticisms of early drafts.

-

30

References:
[BGJ Bernstein, P. and Goodman, N.

Concurrency Control Algorithms for
Multiversion Database Systems
1982 ACM S/GA CT-SIG2OPS Symposium on
Principles of Distributed ComoUting.
Ottawa, C2anada. AUoust 18-20. 1982,
pp.2Q2215

IEGLT] Eswaren, K. P., Gray, J. N., Lonie, R. A.
and Traiger, 1. L.
The Notions of Consistency and Predicate
Locks in a Database System,
CACM. Vol. 19. No. 11. November 1976.

1G) Goree, John
Internal Consistency of A Distributed
Transaction System with Orphan Detection
M.S. Thesis, MIT Laboratory for Computer Sci.,
Cambridge, MA. 1982 in progress.

(I(P] Kanellakis, P. and Papadimitriou, C.
On Concurrency Control by Multiple Versions
Proceedinas of the ACM Symposium on
Principles of Database Systems
March 29-31. 1982. pp. 76-82.

[Lal Lamport, L.
Time, Clocks and the Ordering of Events
in a Distributed System,
CA CM. Vol. 21. No. 7. July. 1978.

[(US] Lisikov, B. and Scheifler, R.
Guardians and Actions: Linguistic Support for
Robust. Distributed Programs,
1982 Ninth A nnual A CM SIGA CT-SIGPLAN
Symposiumn on PRINCIPLES OF
PROGRAMMING LANGUAGES. AlbUguergue. NMA
January 25-27. 1982. pp. 7-19,

[Ml Moss, J.E.B.
Nested Transactions: An Approach to Reliable
Distributed Computing, Ph.D Thesis,
Techn~ical Report MIT/LCS/T _ 20
MIT Laboratory for Computer Science,

* Cambridge, MA. 1981.

[Ra) Randell, B.
System Structures for Software Fault Tolerance.

31

Proc. Int. Con!.on Reliable Softw. (April 1975).
SIGPLAN Notices Vol. 10 Nr. 6. pp. 437-457.
Also in IEEE Trans. Softw.
Eng. Vol. 1 Nr. 2 (June 1975). Do. 220-232.

[Re] Reed, D. P.
Naming and Synchronization in a Decentralized
Computer System, Ph.D Thesis,
Technical Report MITILCS/TR-205.

MIT Laboratory for Computer Science,
Cambridge, MA. 1978.

[S] Stark, E.
Foundations of a Theory of Specification for
Distributed Systems, Ph.D Thesis, MIT
Laboratory for Computer Science,

Cambridge, MA. 1982 in progress.

DATE

ED

83

